NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{x^2-4x} \]

Domain

\[\left]-\infty, 0\right] \cup \left[4, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow4} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x - 2}{\sqrt{x^{2} - 4 x}} \]
\[f^{\,\prime}(x)=\frac{x - 2}{\sqrt{x \left(x - 4\right)}} \]
\[ \]

Integral

\[F(x) = \int \sqrt{x^{2} - 4 x}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0035 seconds