NEW FUNCTION
Function Expression :
\[f(x)=\sqrt{x^2-4x} \]
Domain
\[\left]-\infty, 0\right] \cup \left[4, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow4} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{x - 2}{\sqrt{x^{2} - 4 x}} \]
\[f^{\,\prime}(x)=\frac{x - 2}{\sqrt{x \left(x - 4\right)}} \]
\[ \]
Integral
\[F(x) = \int \sqrt{x^{2} - 4 x}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0035 seconds