NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{2-\frac{x^2-x-2}{x^2-x+1}} \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\frac{\left(1 - 2 x\right) \left(- x^{2} + x + 2\right)}{2 \left(x^{2} - x + 1\right)^{2}} + \frac{1 - 2 x}{2 \left(x^{2} - x + 1\right)}}{\sqrt{- \frac{x^{2} - x - 2}{x^{2} - x + 1} + 2}} \]
\[f^{\,\prime}(x)=\frac{3 \cdot \left(1 - 2 x\right)}{2 \sqrt{\frac{x^{2} - x + 4}{x^{2} - x + 1}} \left(x^{4} - 2 x^{3} + 3 x^{2} - 2 x + 1\right)} \]
\[ \]

Integral

\[F(x) = \int \sqrt{- \frac{x^{2} - x - 2}{x^{2} - x + 1} + 2}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0160 seconds