NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{x^2-4} \]

Domain

\[\left]-\infty, -2\right] \cup \left[2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x}{\sqrt{x^{2} - 4}} \]
\[f^{\,\prime}(x)=\frac{x}{\sqrt{x^{2} - 4}} \]
\[ \]

Integral

\[F(x) = \frac{x \sqrt{x^{2} - 4}}{2} - 2 \operatorname{acosh}{\left(\frac{x}{2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0032 seconds