NEW FUNCTION

Function Expression :

\[f(x)=\frac{(x^2-6 )}{2-x} \]

Domain

\[\left]-\infty, 2\right[ \cup \left]2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow2} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow2} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2 x}{2 - x} + \frac{x^{2} - 6}{\left(2 - x\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{x^{2} - 2 x \left(x - 2\right) - 6}{\left(x - 2\right)^{2}} \]
\[ \]

Integral

\[F(x) = - \frac{x^{2}}{2} - 2 x + 2 \log{\left(x - 2 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0199 seconds