NEW FUNCTION
Function Expression :
\[f(x)=\frac{(1+ln x
)}{x} \]
Domain
\[\left]0, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{\log{\left(x \right)} + 1}{x^{2}} + \frac{1}{x^{2}} \]
\[f^{\,\prime}(x)=- \frac{\log{\left(x \right)}}{x^{2}} \]
\[ \]
Integral
\[F(x) = \frac{\left(- \log{\left(x \right)} - 1\right)^{2}}{2} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0594 seconds