NEW FUNCTION

Function Expression :

\[f(x)=(x-1 )ln(x-1 ) \]

Domain

\[\left]1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\log{\left(x - 1 \right)} + 1 \]
\[f^{\,\prime}(x)=\log{\left(x - 1 \right)} + 1 \]
\[ \]

Integral

\[F(x) = \frac{x^{2} \log{\left(x - 1 \right)}}{2} - \frac{x^{2}}{4} - x \log{\left(x - 1 \right)} + \frac{x}{2} + \frac{\log{\left(x - 1 \right)}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0481 seconds