NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{5x-2}.4x^2 \]

Domain

\[\left[\frac{2}{5}, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow\frac{2}{5}} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{10 x^{2}}{\sqrt{5 x - 2}} + 8 x \sqrt{5 x - 2} \]
\[f^{\,\prime}(x)=\frac{2 x \left(25 x - 8\right)}{\sqrt{5 x - 2}} \]
\[ \]

Integral

\[F(x) = 4 \left(\begin{cases} \frac{2 x^{3} \sqrt{5 x - 2}}{7} - \frac{4 x^{2} \sqrt{5 x - 2}}{175} - \frac{32 x \sqrt{5 x - 2}}{2625} - \frac{128 \sqrt{5 x - 2}}{13125} & \text{for}\: \left|{x}\right| > \frac{2}{5} \\\frac{2 i x^{3} \sqrt{2 - 5 x}}{7} - \frac{4 i x^{2} \sqrt{2 - 5 x}}{175} - \frac{32 i x \sqrt{2 - 5 x}}{2625} - \frac{128 i \sqrt{2 - 5 x}}{13125} & \text{otherwise} \end{cases}\right) \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0076 seconds