NEW FUNCTION
Function Expression :
\[f(x)=\sqrt{x^2-2x+2}-2-(x-3
) \]
Domain
\[\left]-\infty, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{x - 1}{\sqrt{x^{2} - 2 x + 2}} - 1 \]
\[f^{\,\prime}(x)=\frac{x - \sqrt{x^{2} - 2 x + 2} - 1}{\sqrt{x^{2} - 2 x + 2}} \]
\[ \]
Integral
\[F(x) = \int \left(- (x - 3) + \sqrt{x^{2} - 2 x + 2} - 2\right)\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0177 seconds