NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{x^2-2x+2}-2-(x-3 ) \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x - 1}{\sqrt{x^{2} - 2 x + 2}} - 1 \]
\[f^{\,\prime}(x)=\frac{x - \sqrt{x^{2} - 2 x + 2} - 1}{\sqrt{x^{2} - 2 x + 2}} \]
\[ \]

Integral

\[F(x) = \int \left(- (x - 3) + \sqrt{x^{2} - 2 x + 2} - 2\right)\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0177 seconds