NEW FUNCTION

Function Expression :

\[f(x)=x+(x+1 )e^{-2x} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- 2 \left(x + 1\right) e^{- 2 x} + 1 + e^{\left(-1\right) 2 x} \]
\[f^{\,\prime}(x)=\left(- 2 x + e^{2 x} - 1\right) e^{- 2 x} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{2} + \frac{\left(- 2 x - 3\right) e^{- 2 x}}{4} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0342 seconds