NEW FUNCTION

Function Expression :

\[f(x)=\frac{2x-1}{5x-3} \]

Domain

\[\left]-\infty, \frac{3}{5}\right[ \cup \left]\frac{3}{5}, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = \frac{2}{5} \]
\[\lim_{x \overset{<}{\rightarrow\frac{3}{5}} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow\frac{3}{5}} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = \frac{2}{5} \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{5 \cdot \left(2 x - 1\right)}{\left(5 x - 3\right)^{2}} + \frac{2}{5 x - 3} \]
\[f^{\,\prime}(x)=- \frac{1}{\left(5 x - 3\right)^{2}} \]
\[ \]

Integral

\[F(x) = \frac{2 x}{5} + \frac{\log{\left(5 x - 3 \right)}}{25} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0205 seconds