NEW FUNCTION

Function Expression :

\[f(x)=\frac{(x-2 )^2}{x^2-1} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 x \left(x - 2\right)^{2}}{\left(x^{2} - 1\right)^{2}} + \frac{2 x - 4}{x^{2} - 1} \]
\[f^{\,\prime}(x)=\frac{2 \cdot \left(2 x^{2} - 5 x + 2\right)}{x^{4} - 2 x^{2} + 1} \]
\[ \]

Integral

\[F(x) = x + \frac{\log{\left(x - 1 \right)}}{2} - \frac{9 \log{\left(x + 1 \right)}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0107 seconds