NEW FUNCTION

Function Expression :

\[f(x)=2x-\frac{2x}{2\sqrt{x^2}+1} \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 - \frac{2}{2 \sqrt{x^{2}} + 1} + \frac{4 \sqrt{x^{2}}}{\left(2 \sqrt{x^{2}} + 1\right)^{2}} \]
\[f^{\,\prime}(x)=2 - \frac{2}{\left(2 \sqrt{x^{2}} + 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 \left(\left(2 \sqrt{x^{2}} + 1\right)^{2} - 1\right)}{\left(2 \sqrt{x^{2}} + 1\right)^{2}} \]

Integral

\[F(x) = x^{2} - \sqrt{x^{2}} + \frac{\log{\left(2 \sqrt{x^{2}} + 1 \right)}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0090 seconds