NEW FUNCTION
Function Expression :
\[f(x)=x-1+\frac{4}{x+2} \]
Domain
\[\left]-\infty, -2\right[ \cup \left]-2, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-2} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=1 - \frac{4}{\left(x + 2\right)^{2}} \]
\[f^{\,\prime}(x)=1 - \frac{4}{\left(x + 2\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(x + 2\right)^{2} - 4}{\left(x + 2\right)^{2}} \]
Integral
\[F(x) = \frac{x^{2}}{2} - x + 4 \log{\left(x + 2 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0125 seconds