NEW FUNCTION
Function Expression :
\[f(x)=ln(1+\frac{1}{x^2}
)-\frac{2}{x^2+1} \]
Domain
\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{4 x}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x^{3} \cdot \left(1 + 1 \cdot \frac{1}{x^{2}}\right)} \]
\[f^{\,\prime}(x)=\frac{2 \left(x^{2} - 1\right)}{x \left(x^{2} + 1\right)^{2}} \]
\[ \]
Integral
\[F(x) = x \log{\left(1 + \frac{1}{x^{2}} \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0176 seconds