NEW FUNCTION
Function Expression :
\[f(x)=\sqrt{(x^2-6x+5
)} \]
Domain
\[\left]-\infty, 1\right] \cup \left[5, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow5} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{x - 3}{\sqrt{x^{2} - 6 x + 5}} \]
\[f^{\,\prime}(x)=\frac{x - 3}{\sqrt{x^{2} - 6 x + 5}} \]
\[ \]
Integral
\[F(x) = \int \sqrt{x^{2} - 6 x + 5}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0154 seconds