NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{(x^2-6x+5 )} \]

Domain

\[\left]-\infty, 1\right] \cup \left[5, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow5} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x - 3}{\sqrt{x^{2} - 6 x + 5}} \]
\[f^{\,\prime}(x)=\frac{x - 3}{\sqrt{x^{2} - 6 x + 5}} \]
\[ \]

Integral

\[F(x) = \int \sqrt{x^{2} - 6 x + 5}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0154 seconds