NEW FUNCTION

Function Expression :

\[f(x)=\frac{e^x+4x-1}{e^x+1} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{e^{x} + 4}{e^{x} + 1} - \frac{\left(4 x + e^{x} - 1\right) e^{x}}{\left(e^{x} + 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 \left(- 2 x e^{x} + 3 e^{x} + 2\right)}{e^{2 x} + 2 e^{x} + 1} \]
\[ \]

Integral

\[F(x) = \int \frac{4 x + e^{x} - 1}{e^{x} + 1}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0030 seconds